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Abstract

We consider a nonlinear regression model for which the variances depend

on a parametric function of known variables. We focus on estimating the var-

iance function, after which it is typical to estimate the mean function by

" weighted least squares. Most often, squared residuals from an unweighted

least squares fit arc compared to their expectations and used to estimate the var-

iance function. If properly weighted such methods are asymptotically equiva-

lent to normal-theory maximum likelihood. Instead, one could use the devia-

tions of the absolute residuals from their expectations. We construct such

an estimator of the variance function based on absolute residuals whose asymp-

totic efficiency relative to maximum likelihood is precisely the same for sym-

metric errors as the asymptotic efficiency in the one-sample problem of the

mean absolute deviation relative to the sample variance. The estimators are

computable using nonlinear least squares software. The results hold with min-

imal distributional assumptions.
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T R
1. Introduction

Consider a possibly nonlinear regression model in which the variance

of the responses are not constant, but are parametric functions

of predictor variables. More specifically, we have independent observations

YIP Y2 .... YN following the mean-variance model

E Y. = f(Xl I

(1.1),°

Variance (Yi) = .hziJ)

In (1.1), {x.z i. arc fixed constants, 3 is the vector regression parameter,

is a vector of q components, f is called the regression function and h is

called the variance function. See Judge, et al. (1985, Chapter 11) for a

recent theoretical discussion of this basic heteroscedastic regression model,

and Mlontgomery l Peck (1982, pages 99-104) for a simple example. If the -

structural parameter were known, redefining Yi* = Yi/h 1 /-z. ,C) and
fl : x. i f(x. .;.)/h/ -(Z,) would yield a homoscedastic regression ""

model hhich car, be fit by one' favorite method.

h e are fnterebted in the case that the structural parameter

unknown. GJiven an estimate - of ,, the usual device for estimating the

regression parameler - is simply to pretend that is known and equal to

and then proceed as Ln the previous paragraph. lhe resulting estimate of

w!ill be cal led generali zed I east squares. It is one of the great folk!orc

f - . . . " -, . -* . " .-* * - " . .. ". ° •. •o - - o. - . • . • . . . . .--. .....$ ..v-. ..*.. . _ .. . x<_,, '- ... :.- .- .. ,. '----.. .... -.. ,v .



B' does not matter how we estimate 0, at least asymptotically. More precisely,

for large sample sizes the limiting distribution of generalized least

squares is the same as if e were known.

Despite the folklore asymptotics, as intuition would indicate for finite sam-

ples how one estimates t; really matters. Williams (1973) states that "both

analytic and empirical studies of a variety of linear models indicate that

... the ordering by efficiency of (estimator of .-) ... in small samples is

in accordance with the ordering by efficiency (of estimates of e)". In

the linear model, Toyooka (1982), Rothenberg (1984) and Kariya (1985) all

essentially show that for normally distributed data, the second order

covariance matrix of generalized least squares is a monotonically increasing

function of the covariance of the estimate of a; see also Freedman 4 Peters

(198.11 and Carroll & Ruppert (1985) for similar results. Finally, especially

the Monte-Carlo study of Goldfeld & Quandt (1972, pages 96-120) shows that

it is possible to construct a disastrously inefficient generalized least

squares estimator as well as quite an efficient one.

The purpose of this paper is to compare various estimators of 0 by as)mptotic

efficiency. Without making any further assumptions than the minimal (1.1), it is

possible to construct consistent and asymptotically normal estimates of 0 with thet

following "algorithm":

I) istimate . . obtain C

I 1. j lurin square,- residuals r. - ii-f(xi,.-"

(3) Estimate U by a function of the squared residuals. %

Thrcc common methods have been proposed, see llildreth & Htouck (1976),

Amemiva (1977), Dent 4 Hildreth (1977), Jobson & Fuller (1980), Goldfeld

Quandt (1972), Hfarvev (19701 and Theil (19711. among others. The first

"

'.'
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3 h

method is based on pretending that the data are normally distributed, in which

case we can compute the maximum likelihood estimator 6 ML* If 13 in (1.2) is

the inax imum Iikel ih-,o, ,st imat or, then tiMi slves

(1.3) 0 N- 1 2 ! r

IO j : h(zie) E , (

0.p

where

v = ('f. - log h(zi...

Actually, the asymptotic distribution of solutions to (1.3) remains the

same if the estimator of 3 satisfies

(1.4) N1 12 (BR-) = Op(,
p '

a fact sketched in the appendix. The logic of (1.3) is that Er- = h(z,,). The

other methods are also based on the idea that h(zi,,) is approximately the expec-

tation of squared residuals, see Jobson & Fuller (1980). For simplicity of presen-

tation, we will ignore the asymptotically negligible bias in the squared residuals v

due to leverage. The unweighted estimate l minimizes on (FF)
I'S

N

r.

while the weighted estimate e minimizes in (., .
WL S

N , ,
(1.6) h ri -/h z iLS

i=l

This last estimator is motivated by the idea that the variance of squared

residuals is approximately proportional to h(:i,), so that some sort of

weighting ought tobe employed. Also note that differentiating (l.b) yields

.' . -..-.- ..-. °. - ...- .. . ". . . . . -.. - . . . . . . . . . . . - .. - - . - .. f. ' .. +. . ." .. . -"-..:i
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N r2 1 h 2(z. i

1=1 h(z 0) - 1 v(0)J h2 (zi,.LS)

which differs from the likelihood equation (1.3) only by the asymptotically
negligible factors [h(zi,0)/h(zi,0eLS) 2 . In Theorem 1 of the next section, we. !'|

investigate these three estimators of e, proving that (1) for all three the

estimate of 3 is immaterial asymptotically as long as (1.4) holds; (2) maxi-mu ielho and bt n fiin !.

mum likelihood 0 and weighted squared residuals eWLS have the same limit

distributions; and (3) both 6  and WLS are asymptotically more efficient

than using unweighted squared residuals via eLS. These results are obtained

essntially independently of the underlying distribution.

Squared residuals are skewed and long-tailed. For this reason,

Cohen. et al. (1984) suggest the use of absolute residuals, although they

use absolute residuals only as one part of their algorithm and eventually

use squared residuals. For the special case that Variance (Y.) = g(Zi,0)

1?. 22. apparently for computational reasons Glejser (1969) and Theil

(19711) also propose use of absolute residuals. Such use requires a further

assumption, namely that

(I.- qY. - f(x 1") = h1 1 2 (Zi,0)

E:ffectively, (1.1) and (1.7) require that

I 
i

{; h(zi,) l/

be independent and identically distributed, an assumption we shall make

from now on.

Mimicking 1.S) and (1.6), one can construct two estimators of U based

on absolute residuals. Noting from (1.7)-(1.8) that absolute residuals

have approximate expectation ,, hl/2(z i O) and variance proportional to

h(.u), the unweighted absolute residual estimator AVminimizes in (-,0.

N--. .
1.9) -.----7 "- -h- - --..... *.. . .



while the weighted version 0 WAV minimizes

N

(1.10) 1{ril -h (zie)}2/h(zi, AV)
i=1

For the special case that the standard deviation is linear in

exogenous variables, Judge, et al. (1985) propose our general absolute

residual estimators. Even in this special case, they state that the .

properties of eAV and 9WA V "have not been fully investigated". In their

specific context, they go on to make in effect three conjectures:

(a) Absolute residual estimators of 0 are not affected by the method

of estimating 3, as long as (1.4) holds;

(b) Weighted absolute residuals 0 are more efficient than not
WAV

weighting and using "AV;

(c) If we define

6= Var(c )

2= Var( 2

then in the light of Theorem 1 the asymptotic relative efficiency

of the weighted absolute residual estimator e with respect to
WAV

maximum likelihood eML or weighted squared residuals 0WLS is

(1.11) ,( - )

46

In this paper, we verify all these conjectures when the errors (1.8)

are symmetrically distributed. In Section 3, we discuss why it is that, for

ihis special case, using absolute residuals may be preferred when viewed

from a perspective of efficiency robustness.

'I

a" " - |



6

We also show that conjecture (a) and hence conjecture (c) are

false in general for as)mmetrically distributed errors. While the

dependence of the asymptotic distribution on the estimate of a certainly

complicates the theory, the dependence does not disqualify using absolute

residuals. We exhibit a simple example for which using absolute residuals

is always more than twice as efficient as using squared residuals.

The theorems are stated in the next section, with proofs in the

appendix. In the third section we discuss the statistical implications

of the results.
-J
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2. Major Results

We state the results somewhat informally and in the appendix only sketch

the proofs, relying for the most part on simple Taylor series expansions and

the somewhat more complex linearizations in Ruppert Carroll (1980) and Carroll

Ruppert (1982). We first consider the estimators NIL' L and WLS

based on squared residuals. Under minimal assumption such as (1.1) and

(1.4), these estimators are consistent and asymptotically normally

distributed with asymptotic covariance unaffected by the choice of B.

The covariance simplifies if the errors (1.8) are independent and identically

distributed, an assumption we will make throughout. Define

N

T-l°

j cN 1  (v v)(v -V)T~
i=l

Theore(m, 1i. Under (1. 41 a:od further iegulaiity- c,:rditioiis, :ax imumn likel i.- e.'

hood 'INL and weighted squared residuals MIS have the ';ame a,,,.mptotjc

distributions, with

N LIL) (, ML~

N %S N(0, M
-....

where " " means convergence in distribution. Further,unweighted s(qlared

residuals satisfiv-

- 1 2 L. N(OX . ) ,-
'45 -• -VS

where I
LS MI.

'4'
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Thus, Theorem "I assures us that we should weight the squared residuals i

for greatest asymptotic efficiency, at least when the errors are independent

and iden'ically distributed. I'he next result relates to the case of

synmetric errors tl.8), thereby pruving the three conjectures of Judge,

et al. i19:,5) in this special case.

2 Sppuse tat thu errors (.) are symmetrically distributed

'ith a distributicr, function which is continuous in a neighborhood of zero.

JnkiWtr (1.4 and fNi thcr rcguiarity conditioers,

-AV AV'
alit

t

anii'
-- N';AV W A, .V)

- Further, " and

- I -. :WAV M

If the errors are not symmetrically distributed, absolute residual

estimation of 9 is affected by how one estimates . see Carroll C Schneider S.I

* 19,5) for a similar example of this phenomenon. Define

, PrL. O - Pr(c * 0) .

Recall that, by, assumption, 0 is a vector of q components. Define the

mat riCes

N 1 p)hp -

.N h.
p 1=1 ' v/2 -I*

1U

- -......-...--,..°..-.-...........,....,.............. .... ....... ,............................ .... ......-.
• o % % -% % . % %°° - % ° .°. o •" •°". . ** .* , * . - %, . ° . - •a -.. . .- . . . - . . .. *°.. o
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?(XV0 f (xi,*a)

f(xi , t) -- f-x..,'3)
111

e = (O(qx 1) 1 q)

where I is the qxq identity matrix. Finally, define

7 1 

ii = 1. '

Theorem #3. Under (1.4) and further regularity conditions, we have the

asymptotic expansions

N112  V

NN h(ze,e)(ii -E-I)ei

-e Cjj 1 1

S I N hl/2 T(x 1/ 2
zii=l 1

and

N1 / 2 (QWAV-3)

f 1/2 1/2 N ..N (IlFil -EI :i) -,

e C1 i=l
, Ny N 1  N'l/ 2 (zi,e)f T(xi,p)N1/ 2 6,3)

t i=l

Theorem #2 is a corollary of Theorem #3 because, under symmetry, 0 =)

" and the effect of B disappears. In general, when y# 0 and 0eAV are

still asymptotically normally distributed, but their covariance matrices

will depend on the method used to estimate 13.

.5. , . .° . ° *-° *.
° ° ° . °, • , " ° " ° f .' ." . • • °. . .. • . • . . . . . •. . - . " . ° . . • . ° ° - . .
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3. Discussion

In Section 2, we have shown that for estimating

the structural parameter 0 in the variance function, normal theory maximum

likelihood is asymptotically equivalent to weighting squared residuals and

applying a nonlinear least squares algorithm. This result holds essentially

independently of the underlying distributions of the errors {Ei} in

(1.8), which need not even be identically distributed. If the errors are

identically distributed, then both methods are asymptotically more efficient

than ordinary least squares. In practice, this means that if

computing maximum likelihood is inconvenient as in Froehlich (1973) or Dent

Hildreth (1977), then in fitting squared residuals one ought to

weight.

We have also shown that, if the errors (1.8)

are independent and identically distributed symmetric random variables,

then by appropriate weighting one can construct an estimator WAV which

has asymptotic efficiency (1.11) relative to maximum likelihood 8ML and

weighted squared residuals eWLS. For symmetric distributions, in one

-*' sample problems (1.11) is the asymptotic relative efficiency of the mean% 5%

absolute deviation with respect to the sample variance, see Huber (1981,

* pages 2-3). For normally distributed data, using absolute residuals is

. 12" less efficient than using squared residuals. However, for the longer-

tailed double exponential distribution, using absolute residuals is 25'

* more efficient. Huber (1981, page 3) presents an interesting computation

of (1.5) for the class of contaminated normal distributions

.

JbW

S.5%,
5"..

-., 5 , .. .* - Vs,**
* **.~ S ~ *
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where ' is the normal distribution function. This distribution arises

when a random fraction a of clean normally distributed data is contaminated

by normal data with three times larger standard deviation, and it is

r. commonly used in robustness studies. The relative efficiency of absolute

values as a function of the contamination fraction a is given as follows:

Relative efficiency

0.0 87.6%

0.001 94.8%

0.002 101.60.

0.01 143.9%

0.05 203.5'.

Huber calls these numbers "disquieting", noting that just 2 "bad" observations

* in 1000 suffice to offset the superiority of squared over absolute residuals

when estimating the variance function.

If the errors are symmetrically distributed or nearly so, then robustness

of efficiency considerations strongly suggest using weighted absolute residuals

to estimate the variance function rather than weighted squared residuals

or normal theory maximum likelihood. Computation is not intrinsically

difficult since it is based on the usual nonlinear least squares methodology.

The residuals are defined through an estimate of the regression parameter

3,. The estimation of the variance function using squared residuals is

asymptotically unaffected by the estimate of B. The same can be said for

absolute residuals only when the errors are symmetrically distributed. Clearly,

the use of absolute residuals is complicated and more research is needed in

this direction. That further research may be quite useful is seen in the following

.m

L -. - - . -. . . .% .... •. . ,. . ...... . . ,-. . .. .. . .. . ..- , . •, "
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example. Let {W. be independent and identically distributed negative

exponential random variables with mean one. Consider the model of hetero-

scedastic regression through the origin,

Y x. + J X 11 2 (W1).

I n th is ca se, 9 = , v. 1 og x. and writing

1 N 1

Var(v) =N 1 (v t-v)

* normal theory maximum likelihood satisfies

112~N (MLe) =~N(O,9.0/Var~v)).

* When 0 =2, simple calculations show that the estimate of P does not matter

* and that

N 0 - N(0,3.4/Var(v))

Writing

N
a N1j x. 2-0

N 1-e/2
b= N1 l (v.i-V)X.

we find that if is any generalized least squares estimate, then from the

appendix,
( 2

N112( -.0)37b
N WAV- N 0, + .7 0 2

Var(v) (Var(v)) a 0
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indicating the asymptotic superiority of using absolute residuals as long

as

a2sj_
(3.1) b2 < 2.36 a0 Var(v)0 0

By the Cauchy-Schwarz inequality, b 02 < a0 Vat(v) and from (3.1) we see that

using absolute residuals will always be more than two times as efficient as

the MLE or squared residuals.

The point of the previous example is that absolute residuals estimation

*. of e should not be automatically dismissed simply because it has an in-

convenient asymptotic theory under asymmetric errors. As long as one can

reasonably make the crucial assumption (1.7), using weighted absolute

residuals to estimate the variance function should be given serious

consideration. However, further research is needed to help the statistician '.

choose between using weighted squared or absolute residuals when asymmetry

is present.

We have confined our discussion to weighted least squares estimation

of a and absolute versus squared residuals for estimating the variance

function. Our techniques apply to other methods, including using weighted

logarithms of squared residuals and the robust estimation schemes of Carroll

Ruppert (1982) and Giltinan, Carroll 5 Ruppert (1986).

.

o."
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Appendix

Proofs of the main results

To keep this section somewhat self-contained, there is some redundancy

with the text. Let 2 be any estimator satisfying

1/2
(A.1) N (B - 2) = 0 (1) .

p

Let {a.} be any sequence of constants. Define ,

r. = Yi- f(xi' 3)

K.'= Yi- f(xi' s ) = { iih(zi 2

y Pr(c 0) - Pr(c < 0)

i i
ci  f (x f i(, ) =  3)

b. a. h h(z. , e) 
1/2

d i  = ci ,, h(z. , 0) i -- /2

Lemma #1. Under regularity conditions,

(A.2) N 2 1/2 N 2(A N a = N- ais + o(f
i i i p

Proof:

This follows because

N

-/2 N 2 2
a. (r. -s,
i 1i 1

1 - /2 2 :N L a.lf(x., ) - f(x.,

i 1 11

N

-1/2 N . 1/2
-2 N L -i [: - h(z., .i /  [f(x., 2)- f(x., 6)]

1 1%

p1

-0 P • 0 I.



by Taylor series, (A.1) and the fact that EE-. From (A.2), we see

that in computing estimates of e based on squared residuals, it is

sufficient to do the asymptotic distribution theory assuming is known.

Proposition #1. If the distribution function {&} is continuous at zero,
1 %

its mean, then

lim N1/2 E{ E-v/N 1 /
2 , _ N.

.- "

Proof: Routine.

Lemma #2. Make the assumption of Proposition #I. Define

N

-1/2NH =N asi!NL ii=l

I T 1/2
- N a. f(xi, 1) N (J-eI)

i=l1.

Then

-t/2 N -..

(A.3) N HN a rJ 0o (1).

Proof: Define

-11 N 1/2
(A.4) QN() N_/2 a !-

i=1

As in Ruppert & Carroll (1980) or Carroll & Ruppert (1982), for every

M 0e have

* *sup )Q () - E Q = o (1)
'1 p

Wi iting

/2 (f(xi, :+/N 1/2 - f(xi, f))
T 1

.c. , where c. f (x ,
1 V" i

7- . .
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we see from Proposition #1 that

(A.5) E QN(A) - N N ai f(xi, ) T A .

Substituting N 1/2_(-_) for A and putting (A.5) into (A.4) shows that

N N
-1/2 1 N 1/2 f~(A.6) NI a. r + - a ., .)T 1 /2

NN-1/2.-.-N )a !s o 1
i. i~ p

completing the proof. Lemma #2 will assure us that, when dealing with

methods based on absolute residuals, we may replace

-1/2 N
N a r

i= 1

by
N N *

N- 1/2 . a 1isi - y N I  a i f(xE, 8)T N1/2(-)

i=1 i=l

This makes the proofs routine, and eliminates the effect of the estimate

of F, when y = 0, see Theorem #2. Define

v. = v.('?) = h(Z i , ' " )/h(Z i , )
I l "1 1, A

C =N

C N 1 I v h (Z

= i: N r v 12 (1 rv /2) hZ., 7)

Proof of Theorem fl. We will study each estimator in turn, only sletchiing

the proof. For typing convenience, we will use the generic ( 9, 9) , which

will refer in turn to the estimator under consideration. Because of

Lemma #1, we may assume that is known.

I



Maximum Likelihood. Using a Taylor series and Lena #1, we have that

N ri2 1o=N1/2 _ - 1

oN i=1 { h(zi, 0) - vi(8)

i=1 h(Zi, 8) Vi

-NN ~ * r ~ 1/ 1

ii1N-~ 1/2

(1/2 2 1 1/2N-/ (c. - i ;U

4 N- C Nov 1=1 t ie

Thus,

1/2 0 - __2 -1

9 K

Easy algebra yields the result.

Unweighted squared Residuals. Again, from Lemma #I,

1/I2 N 2 .:
o N- h(Z i , e) fr 2 h(Z, ) 612

,".'

N
N1 /2 N 2 1N h2(Zi, 0) (F -1)i=l 1 i "

N^

N- I N 2 (Z 9 (1 ..,,/2

*" so that

N1 /2 NO, 2 K
w N(O, K 2  32

mm-1 - 1 - 1 .,'

Since C I- 2 C3 C2  unweighted squared residuals are less efficient

than maximum likelihood.

°.
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Weighted Squared Residuals. Again, from Lemma #1,

N h(, r1'(

0= Ii

N 1/2 N 2 _1e
- L g(. -1 )1

1 'Pi1i

* 1/2f
-C 1 N

This shows, as claimed, that

N1/2 2 -1 - ":"
N N(O, K C

Proof of Theorem #3.

By Lemma #2, we will be able to replace Ir I by Isij - y f(x i ,  6-

1/2 2
Recall that we are writing EI = n/ , and that [EIEI]2= 1-, c=Var(IcI)

For unweighted absolute residuals, from Lemma #2 and a Taylor series we

obtain 11i2 1 /2 hl/2Zi I .

i N 1 h (Z, 1 ( )) v (6)/2

1 1 1/2"
- y N - L . h (Z i, )(Tii- E N )

i= 1 1 .1

N

2*P

This is the first part of Theorem #3. Noting that for weighted absolute %

residuals

-/2 N h(zi, ) 1/2 rj 1/2 h (Z i
oN 1/2

i~l h(Zi , 
0LS) I h/(Zi,  LAv  i

.1%.

..............................................................

2-



vi
i .

essentially the same application of Lemma #2 and Taylor series completes

the proof.

Proof of Theorem #2. For the symmetric case, y 0. From Theorem #3,

N 1/2AV-) = N(O, 6 C2
,  C3 C2

; )

1/2 1

N WAV N(0, CI

2
Noting that E = 2/(1-6) and simple algebra completes the proof.

Proof of 3.2. Detailed calculations yield

-1
= Pr(c > 0) - Pr(c < 0) = 2 e -1

-2
= Var(IcJ) = 1-4 e

-1
EEI = 2 e

E(cJEJ) = 4 e- -1

eCs . 2 ( -).
1* i r Var(v) (vi

For any generalized least squares estimate of 6,

1/ )/2 (1a 1/2 N 1-8/2
N 1-1

NI/( 6 r);/ . (1/aO  N-/2 x. "

0i=1

Substituting into Theorem #3 yields

N 1/2
Nv-WAV(v jI)

2 -1/2
Ejl i  Var(v) N 1-k /-}/2

i1 -y(b /ao) x
0 0

The result now follows immediately.
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Abstract

Our focus is the simple linear regression model with measurement

errors in both variables. It is often stated that if the measurement error

in x is "small", then we can ignore this error and fit the model to data

using ordinary least squares. There is same ambiguity in the statistical

literature concerning the exact meaning of a "small" error. For example,

Draper and Smith (1981) state that if the measurement error variance in x

is smnall relative to the variability of the true x's, then "errors in the

x's can be effectively ignored", see Montgomery & Peck (1983) for a similar

statement. Scheffe (1973) and Mandel (1984) argue for a second criterion,

which may be informally summarized that the error in x should be small

relative to (the standard deviation of the observed Y about the

line)/(slope of the line). We argue that for calibration experiments both

criteria are useful and important, the former for estimation of x given Y

and the latter for the lengths of confidence intervals for x given Y.

.. .
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1. Introduction

There is substantial literature on the problem of precision instrument

calibration, see for example Scheffe (1973), Rosenblatt and Spiegelman

(1981) and Mandel (1984). We will focus on such calibration when fitting a

straight line to a set of data in which the predictor x is measured with

error.

Recently we were asked to try to quantify what is meant by a "small"
~b5,

measurement error in x, with the idea that, if such error were small, we

could safely ignore it and procede with ordinary least squares analysis.

In trying to do this we realized that the literature is smeawhat ambiguous,

* and in fact there are two distinct criteria used to decide when measurement

error in x is small. For example, Draper and Smith (1981, page 124) state

that if the measurement error variance in x is small relative to the

variability of the true x's themselves, then "errors in the x's can be

effectively ignored and the usual least squares analysis performed". This

comment is echoed by Montgomery and Peck (1982, page 388). On the other

hand, both Scheffe (1973, page 2) and Mandel (1984) use the criterion that

we can safely ignore measurement error in x if its standard deviation is

small relative to the ratio

Standard deviation of measured Y about the line.

Slope of the line

The authors were working in different contexts, so it is not surprising

that their criteria differ.

-.% %-. .- - -..- .., ... ... ..,, -....- ....-. -... ,..- . -.. .-.• .... -. ... ......- .-. -.. ... ... -....- .-..- ..-. -..-,,,5.'...2
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In this paper, we point out that for calibration experiments both

criteria are useful. The criterion used by Draper and Smith is appropriate

when the goal is estimation of intercept and slope based on the calibration

data set, and then at the second stage for estimting the true value of x

frau a new observed Y. The criterion of Scheffe and Mandel addresses the

issue of lengths of confidence intervals for estimating x from an observed

Y. If the Draper and Smith criterion is satisfied while that of Scheffe

and Mandel is not, the effect of ignoring the measurement error in x is

essentially to cause larger confidence intervals for estimating the true -

* value of x fran new observed Y than is necessary.

Suppose that observed responses fYi } are related linearly to the true

working standards {xi } through the equation

Y.i = CK + fix. + 6.,i =l2,.N(1)

Here the deviations {ei } canbine measurement errors in the response with

equation or model error, and the {Ei } are normally distributed with mean

* zero and cxmwmn variance o- 2

Rather than observing the true working standards {xi, we observe

X. = x. + v. (1.2)

where the measurement errors {vi } are assumed normally distributed with

* 2mean zero and variance 2 . In the terminology of Puller (1986), the

equation (1.1) includes both equation error and response measurement error.

Fran now on, when we speak of measurement error we will mean measurement

error in the true {xi}..

A

% %

A%

4.m
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Assuming the working standards (x.i are measured without error, oneI%

would often procede as follows. First, perform the usual least squares

analysis, which yields estimates (CL' IL'L ). A new, independent

observation Y, is then made, and the goal is to estimate the value of x*

such that.."
*0

E Y. = o[ + B X.

The maximum likelihood estimator is

,- = (Y- GL) /L (1.3)

For confidence intervals, the Working-Hotelling 100(1-a) % interval

(Seber (1977)) for the unknown x. is

I = {x: Y. is contained in the interval xL+ BL x_ toL R(x)),

(1.4)

where to[ is the 1-a/2 percentage point of the t-distribution with N-2

degrees of freedom, and

R2 (x - 1  -2 2R Wx = I + N-I{I + (x-x)2/s2 ,)

-2where x, s2x are given by

N N
- l\2 -l\ -2XN x N (x - x). =  i ,

1 1

If the calibration is to be repeated, more ocmplex confidence statements

are available for those who wish to use tham, see Scheffd (1973).

Draper and Smith's criterion for the severity of measurement error is
,i2

measuremnent error variance in the (x.) 0mi , ( 1.5)

Variation of the (x i ) s x

"°F
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Scheff4 and Mandel propose that the severity of measurement error depends

on the size of

2 2 (1.6)O4.nr((Oe/8)
In the next section we discuss the criteria (1.5)-(1.6) with regard to

estination and confidence intervals for x, given an observed Y,.

. 2. The Effect of Small Error

The working standards {x I are fixed constants, and the criterion

* (1.5) thus depends on the sample working standards. For large enough

samples, we will think of the mean of the (x.) as converging to IA and the1x
variance of the ixi also converging, so that (1..5) can be written as

2 2 . (2.1)
a 44

The least squares estimates ( L L) convrgqe in pr-ability to

(ac + \ px1(l4-K), 8/(l+K)) respectively. By centering appropriately so

that Vx Z 0, we see that the bias in least squares essentially depends on

the size of K in (2.1). wen K is mall, for the purpose of estimation,

the effect of ignoring measurement error in the true (xiI is slight.

There is no standard method to correct for ,masurement error when

estimating (0x, 6, ', . For example, when there is no replication in

the experiment, it is customary to assume that the ratio

= 2 (2.2)

is known, see Kendall & Stuart (1961, pages 375-387) or Fuller (1986). Tn

sane applications, e will be known from the physical set-up of the problem.

..

&44
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For the effect of misspecifying 0, see Lakshminarayanan & Gunst (1984) and

Ketellapper (1983). The basic danger is in thinking that 0 is larger than

it actually is. In practice, if 0 is not known one usually considers

replicating the responses and/or the predictors so as to allow estimation

of om and o-e, see Fuller (1986) for a thorough discussion.

Regardless of whether 0 is known or replication is used, we can make

the following general qualitative statement. When X is small, not only

are the least squares estimators nearly the same as the maximu likelihood

estimators, but in particular the least squares estimators are

approximately unbiased as discussed previously. The story is considerably

different when we turn to confidence intervals. Define

L= length of the confidence interval for x, given Y, taking

into account the measurement error in (xi ..

L = length of the confidence interval for x, ignoring the2

measurement error in the {xi ".

If we assume that the sample sizes are large enough and, if replication is

used, there are sufficient degrees of freedom in the replication, in

Appendix A we verify that when ) is small the ratio of the confidence

interval lengths is approximately
L 2 1

2 + ( ) 2 (2.3)Ll O'e/fi

The reason that (2.3) holds is that, as seen in (1.4), the length L2 of

confidence interval ignoring measurement error is essentially proportional

2 2 2~to og' which converges in probabilty to (o-, + B ' while the length LI

'F " """" -"""---. """"-".. " - :""" " -, I
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6is proportional to an estivate of o-,; the ratio of these two lengths is

(2.3).

Equation (2.3) verifies the criterion of Scheffe and Mandel that for

confidence intervals, we can ignore measurement error in the working

standards only if the measurement error has variance o2 small relative to

O2. In the next section we provide an example where the criterion

(1.5) mentioned by Draper & Smith is small but the Scheffe and Mandel

criterion (1.6) is large.

3. An Example

In Table I we list a subset of the data investigated by Lechner, Reeve

& Spiegelman (1982). It is not our purpose to provide a definitive

analysis of these data. Rather, we use the data only to provide a means of

exploring the effect of ignoring simall measurement error, especially

through the increased length ratio (2.3). We assume a straight line fit

(1.1) to the data. We find that OIL = -291.49, 8L = 2346.64 and -= 1.64.

Fran discussion with the investigators it was thought that om and 0e are

of the same order of magnitude. However, since o- is made up of both

response measurement error and ;;i ,1 error, for this illustration we

decided to be rather conservative as suggested by Lakshminarayanan & Gunst

(1984) and Ketellapper (1983) and set e = 0.001 in (2.2). Following

Kendall & Stuart (1961), the maximum like-lihood estimators of 1(0,8,0.)

assuming e is known are given by

ip
"mp

%A

. . m
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-1

=+Y --8+

OM e [Sx - a / ,

where

N
2 \ -2/ (xi-x)

Si N

2 N

1 N
S- (X -X)(Y-Y).
S N

It is known that the maximu likelihood estimator for o- is biased even in

larger samples, and it is customary to make the correction
0- 2

We found that

6, = 2346.64, om* = 6.77 X 10

Making the rough approximations

": *'- : m*' 2 m .~001o2 and

2 221 Sample variance of observed X's - 1 0.57,
xm

we find that X < 0.001. Since X is very small and a , we conclude

that for purposes of estimation, measurement error in the {xi) can be

%: %
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effectively ignored. However, the ratio of the lengths of the confidence

intervals for x. is approximately

L L2/L 1  (I + e a2)1 : 74.2

This large ratio tpohasizes our point that the definition of "small

measurement error" must depend on whether one is interested in estimation

or confidence intervals.

4. Conclusion

We have shown that, under the ideal conditions of a straight line

model and a fairly large-sized working sample, ignoring measurement errors

in x which are "small" relative to the usual estimation criterion (2.1) can

result in calibration confidence intervals which are much larger than

necessary. For confidence intervals, it is more sensible to judge

measurement error size on the basis of both (1.5) and (2.3). Ignoring the

measurement error in the true working standards (xi } will cause an increase

in confidence interval length on the order of (2.3).

We finish by emphasizing that using neasurament error techniques Lo

obtain shorter calibration confidence intervals requires that equation

(1.1) should hold. While least square confidence intervals can be very

conservative in examples such as we have studied, they are more robust

against small model misspecifications. Small perturbations from the

straight-line fit can significantly alter the coverage probabilities of the

measurement error confidence interval I without greatly affecting the

coverage of the least squares intervals.

* r ,.°~r'. . . . . . . .
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Appendix A

In this appendix, we verify the apprcmcimation (2.3). T4ile a precise

large-sample analysis is routine, it is also notationally quite cumbersome.

The essential ideas are perhaps easier to understand through the following

heuristic analysis. Suppose that N is large and that \ in (2.1) is small.

Assuming that

2 2(A.1) o- o =e e known,

then maximum likelihood estimates (x,, 8,) can be formed which are

* consistent for (x,B), see Fuller (1986). Under the assumption of smail 

* and large sample size N, we have

"[L -X C,- ; aL 8* 8

ol) ~ -Cm* ~ L' O-L (oe + 2-)

Here "m* is the usual consistent estimate of 0-6 under the assumption

(2.2). Taking into account the measurement error in (xi } and using (o,,A1

8,, o m*), within our heuristic framework the appropriate Working-Hotelling

- confidence interval for x, is appr~cimately

I1 {x: Y, e a, + , + z5 Om,} .

where z is the 1-(x/2 standard normal percentage point. 1he usual

interval formed by ignoring measurement error is apprxirmvL.ly

12 = {x: Y, e OcL + OL x + zx ;-LI

This latter interval is strictly appropriate not for x, but rather for

X= x, + v . The length of the confidence interval I1 taking into account
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measurement error in {xi } is, for large samples, proportional to

(A.2) L1 ~2z o- /B

while that for the usual least squares analysis is proportional to

(A.3) L : 2 z c2 82 2 ) .2 O'*e) /8

* The ratio of these lengths is, noting (A.1),

(A.4) L2 ( 1 + {cPm/lO/ 2

Lo
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